Струйная технология печати. Пьезоэлектрическая печать

Вконтакте

Одноклассники

Первый пьезоэлектрический принтер был изготовлен компанией Siemens в 1977 году. В качестве электромагнитного преобразователя в нём использовались пьезоэлектрические трубочки, окружённые литой пластмассой. Инициатива Siemens была подхвачена компанией Epson , которая в начале 1985 года представила на суд общественности свой первый пьезоэлектрический принтер Epson SQ-870/1170.

Вместо пьезоэлектрических трубочек, окружённых пластмассой, компания Epson использовала встроенные в печатающую головку небольшие плоские пьезокристаллические пластинки. Двумя годами позже компания Dataproducts предложила использовать в струйных принтерах пластинчатые пьезопреобразователи – плоские длинные пластинки (ламели), связанные с вибрирующим мениском (диафрагмой) чернильного резервуара. Компания Epson по достоинству оценила инновацию Dataproducts, и начиная с 1994 года стала оснащать пластинчатыми преобразователями все принтеры серии Epson Stylus.

Сегодня Epson – это единственная в мире компания, выпускающая пьезоэлектрические принтеры. Для поддержания своего монопольного положения Epson запатентовала технологию пьезоэлектрической печати во всех странах мира. Для этого ей пришлось получить более 4 000 патентов.

Технология пьезоэлектрической печати наглядно показана на рисунке ниже. Раскроем её основные этапы.

Технология пьезоэлектрической печати

Под воздействием электрических импульсов пластинчатый пьезопреобразователь (ламель) выгибается и оказывает давление на мениск чернильного резервуара, к которому он прикреплён. Резервуар, сокращаясь под давлением ламеля, действует по принципу насоса, и выталкивает из сопла микроскопические порции чернил, которые распыляются на бумагу. После вылета чернильной капли ламель получает противоположное напряжение и выгибается в обратную сторону, увлекая за собой мениск резервуара. Объём резервуара при этом увеличивается, за счёт чего в него затягивается новая порция чернил.

Пластинчатые преобразователи совмещают в себе преимущества как трубчатых, так и плоских систем – компактную конструкцию и высокую частоту распыления чернил.

Пьезоэлектрическая печать включает в себя три важных компонента, гарантирующих её качество:

  1. активный контроль мениска;
  2. печать микрокаплями;
  3. регулирование объёма капель.

Активный контроль мениска (Active Meniscus Control) и отсутствие термоэлементов в пьезоэлектрических принтерах предотвращают появление капель-сателлитов (спутников), вылетающих из сопел вслед за основными каплями. Это позволяет избежать ореола вокруг изображения, придаёт отпечаткам отчётливость и улучшает цветопередачу.

Пьезоэлектрический принтер Epson

Пьезоэлектрические принтеры Epson печатают микрокаплями, объём которых составляет всего 2 пл – это самый маленький объём капель среди струйных принтеров (для сравнения: объём микрокапель Lexmark – 3 пл, HP – 4 пл). Микроскопичность чернильных капель, получаемых в процессе пьезоэлектрической печати, позволяет добиться высокого качества и разрешения изображений. Максимальное разрешение пьезоэлектрических принтеров Epson, представленных на российском рынке, составляет 2880х1440 dpi.

Диаметр сопел в пьезоэлектрических принтерах Epson больше диаметра сопел в термоструйных принтерах, что позволяет регулировать размер чернильных капель (Variable Size Droplet технология). Использование микрокапель повышает качество изображения, но снижает скорость печати. Чтобы ускорить процесс печати при удовлетворительном качестве отпечатка пользователь может увеличить объём микрокапель. При этом скорость печати значительно повысится.

Печатающая головка пьезоэлектрического принтера – дорогое высокотехнологическое изделие. Она монтируется на каретке принтера. Соответственно, пьезоэлектрические картриджи – это так называемые «чернильницы» без печатающей головки. По заявлению компании Epson ресурс обычной печатающей головки пьезоэлектрического принтера составляет 5 лет, широкоформатного принтера – 10 лет.

Вконтакте

Одноклассники

Технология термоструйной печати основана на свойстве чернил увеличиваться в объёме при нагревании. Разогретые чернила, увеличиваясь в объёме, выталкивают в сопла печатающей головки принтера микроскопические чернильные капли, которые формируют изображение на бумаге. В общем виде технология термоструйной печати представлена ниже.

Технология термоструйной печати

Термоструйная печать – это наиболее популярная технология струйной печати, которая используется при производстве 75 % струйных принтеров.

Удельный вес принтеров, использующих термоструйную технологию печати

Наибольший вклад в развитие технологии термоструйной печати внесли корпорации Canon и HP , которые в 70-х годах ХХ века независимо друг от друга разработали две технологии печати: Bubble Jet (Canon) и Thermal Inkjet (HP).

Технологии термоструйной печати

Технология термоструйной печати Bubble Jet была представлена на суд общественности в 1981 году на выставке «Grand Fair». В 1985 году с использованием инновационной технологии был выпущен легендарный монохромный принтер Canon BJ-80, в 1985 году – первый цветной принтер Canon BJC-440.

Схематичное изображение технологии струйной печати Bubble Jet

Суть технологии струйной печати Bubble Jet заключается в следующем. В каждое сопло печатающей головки встраивается терморезистор (нагреватель) для мгновенного разогрева чернил, которые при температуре свыше 500°С, испаряясь, образуют пузырь, выталкивающий каплю чернил наружу. Затем терморезистор отключается, чернила охлаждаются и пузырь исчезает, а зона пониженного давления затягивает новую порцию чернил.

Интересно, что чернила разогреваются до температуры 500°С всего лишь за 3 микросекунды, а капли вылетают из сопла со скоростью 60 км/ч. Ежесекундно в каждом сопле печатающей головки цикл нагревания и охлаждения чернил повторяется 18 тысяч раз.

Вторая технология струйной печати - Thermal Inkjet – начала разрабатываться компанией HP в 1984 году, но первый принтер ThinkJet, основанный на данной технологии печати, был внедрён в массовое производство значительно позднее.

Схематическое изображение технологии струйной печати Thermal Inkjet

Технология Thermal Inkjet основана на том же принципе печати, что и технология Bubble Jet, с той лишь разницей, что в принтерах, использующих технологию Bubble Jet, терморезисторы расположены в микроскопических соплах печатающей головки, а в принтерах, использующих технологию Thermal Inkjet, они находятся непосредственно за соплом.

Таким образом, технологии Bubble Jet и Thermal Inkjet различаются лишь в деталях.

Основными преимуществами термоструйной печати перед пьезоструйной являются отсутствие движущихся механизмов и стабильность работы. Наряду с этим термоструйная печать имеет один существенный недостаток: она не позволяет контролировать размер и форму чернильных капель. Кроме того, когда чернильные капли вылетают из сопла печатающей головки, вместе с ними вырываются капли-спутники (сателлиты), образующиеся при закипании чернил. Появление таких «спутников» может быть спровоцировано нестабильной вибрацией чернильной массы во время её выброса из сопла. Именно капли-спутники являются причиной образования нежелательного контура («чернильного тумана») вокруг отпечатка и смешения цветов в графических файлах.

Пузырьковая струйная печать (каплематричная)

При каплематричной печати в качестве «снаряда», вызывающего выброс капель из сопел печатающей го­ловки, служат встроенные в головку нагревательные элементы (терморезисторы). При подаче кратковремен­ного напряжения температура нагревательного элемен­та резко (в течение считаных микросекунд) возраста­ет до нескольких сотен градусов и вызывает мгновен­ное вскипание и испарение контактирующих с ним чер­нил. Возникающий при этом пузырек пара и выполня­ет роль «пороха», заставляющего чернила «выстрели­вать» из сопла. Затем напряжение с терморезистора снимается, он остывает, чернильный пар конденсируется, пузырек схлопывается и в сопле образуется зона пониженного давления, под действием которого всасывается новая порция чернил. Важной особенностью такого печатающего устройства является простота конструкции сопел. Причем, кроме низкой стоимости изготовления, такие устройства имеют ряд других преимуществ:

Высокая надежность каждого сопла упрощает конструкцию и, следовательно, уменьшает размер печатающего узла, так как не надо обеспечивать возможность замены сопел;

Сопла можно располагать гораздо ближе друг к другу, а это увеличивает разрешение печати;

Бесшумная работа печатающей головки.


Несмотря на то что принтеры Canon, Hewlett-Packard и Lexmark роднит одна и та же технология, они име­ют свои конструктивные особенности. В аппаратах фирм Hewlett-Packard и Lexmark чернила поступают в, условно говоря, отдельную камеру, где и установлен терморезистор. Как можно видеть на рисунке, капля «выстреливается» в том же направлении, в котором об­разуется газовый пузырек.

Компания Canon пошла не­сколько иным путем. В «пузырьково-струйных» (Bub­ble-Jet) принтерах Canon пузырьки образуются в на­правлении, перпендикулярном выбросу капель из сопел. Такое решение дешевле в производстве и теоретически обеспечивает меньшую точность «серийных выстрелов» (хотя на практике последнее заметить трудно). В со­временных моделях принтеров, использующих каплематричную технологию печати, частота генерирования капель составляет десятки килогерц, а микроскопиче­ские дозы формируют капли минимальным объемом 1 пл. При этом печатающие головки, изготавливаемые фотолитографическим способом, могут содержать свы­ше шести тысяч сопел. Стоит заметить, что фирмы по-разному подходят к вопросу о том, как именно долж­на быть выполнена печатающая головка. В изделиях Lexmark печатающая головка - часть картриджа, и потому ее ресурс невелик (соплам достаточно вырабо­тать лишь содержащееся в картридже количество чер­нил), но также невелики и проблемы в случае, если головка, к примеру, пересохнет - пользователь про­сто меняет картридж и продолжает работу. Аналогич­ная конструкция применяется и в большинстве прин­теров Hewlett-Packard (исключение - последние мо­дели с технологией SPT). Иначе выполнен ряд аппара­тов Canon, у которых печатающая головка представля­ет собой отдельный (и довольно дорогой) блок с боль­шим ресурсом, при необходимости легко заменяемый другим, а чернила поступают из устанавливаемых в этот блок картриджей.

Цветные струйные принтеры

Поскольку картриджи могут содержать чернила различных цветов, современные струйные принтеры при сравнительно небольшой стоимости легко справляются с задачей цветной печати, что и является их основным преимуществом перед главными конкурентами - лазерными принтерами.

В большинстве цветных струйных принтеров используется цветовая схема CMYK: Сyan (голубой), Magenta (пурпурный), Yellow (желтый) и Black (черный), т.е. имеется цветной чернильный картридж, содержащий голубые, пурпурные и желтые чернила, и картридж с черными чернилами. За счет взаимного наложения капель разных цветов в струйных принтерах удается получить практически полную цветовую гамму. Теоретически, наложение всех трех цветов должно давать абсолютно черный цвет, однако фактически они воспроизводят грязный коричневый цвет и к ним необходимо добавлять черные (К) чернила, чтобы получить абсолютно черный цвет.

Для качественной и корректной в плане цвета печати, распылитель (печатающая головка) должен быть как можно более точен. Его характеристики - разрешение печати и размеры капли, причем он должен уметь создавать капли разных размеров. Сегодня каждый производитель нашел свой подход к этой задаче, но суть фирменных технологий остается неизменной - распылитель должен быть гибким и точным. Пример тому: создание 6-тицветных принтеров, (к цветам схемы CMYK добавляются еще два: Light Cyan и Light Magenta), т.е. такие печатающие устройства создают изображения, используя схему CMYKLcLm. С помощью этих принтеров можно достичь более точной передачи цвета и полутонов. В частности розовый цвет, который доминирует в цвете кожи человека, можно отпечатать более натурально, соответственно, печать любительских фотографий становится на порядок качественней. Линейка принтеров компании Seiko Epson, впервые использующие эту схему, получила соответствующее название - Stylus Photo.

Другой проблемой цветной печати является несоответствие представления цвета на экране (схема RGB) и представления цвета на принтере (схема CMYK). Преобразования цвета из CMYK в RGB или обратно никогда не будут обратимыми, т.е. если создать изображение в RGB, преобразовать его в CMYK, а затем обратно, цвета будут отображены некорректно. Для разрешения этой проблемы создаются новые драйвера, которые автоматически создают переход между RGB и CMYK непосредственно перед печатью. Но это не может полностью решить проблему. Похожесть цветов на экране и на принтере будет лишь относительной.

ЛАЗЕРНАЯ ПЕЧАТЬ

Лазерный принтер - это устройство, формирую­щее на бумаге или другом носителе (прозрачной пленке, конверте, ткани и пр.) полученное от компьютера изображение способом электрофотогра­фии, т. е. используя способность некоторых материа­лов изменять свой электрический заряд под воздейст­вием светового излучения.

Ксерография

Ксерография изобретена в 1936г. американским ученым. Ксерокс - это сухой и ксерография - это вид сухой печати изображения. Ксерография использует для запоминания графической информации пластинку из селена - полупроводникового материала. На металлическую основу пластины из хорошего проводника (меди и ее сплавов) наносится слой полупроводника - селена. Пластина полируется и имеет высокий класс чистоты - зеркальную поверхность. Процесс ксерографической печати можно разделить на несколько этапов.

Первый этап - зарядка полупроводниковой селеновой пластинки равномерным электрическим зарядом с помощью коронного разряда. Процесс происходит в темноте.

Второй этап -экспонирование - проецирование изображения на заряженную селеновую пластинку. Фотоны света выбивают электроны в селене. Эти точки приобретают электронную проводимость, и потенциал пластины «стека­ет» на проводящее основание. Образуются «потенциальные» ямы. В результате, на поверхности пластины при экспонировании изображения образуется потенци­альный рельеф изображения.

Третий этап - проявление изображения. На потенциальный рельеф насыпается красящий порошок, который притягивается к потенциальным вершинам.

красящий порошок

Четвертый этап - ссыпание не притянутого к потенциальным ямам порошка под действием силы тяжести.

В отличие от термоструйного способа выброса чернил на лист бумаги путем нагрева чернил до высокой температуры и создания избыточного давления пара, при пьезопечати чернила выбрасываются за счет применения силы- кратковременного ударного воздействия.

Принцип работы принтеров с технологией пьезопечати: ударное воздействие пьезокристалла на чернила в ограниченном объеме печатающей головки приводит к выбросу дозированной порции чернил в нужное место на листе бумаги. В современных печатающих головках используются пьезокристаллы, к которым можно применять разную силу тока и изменять период применения тока на кристалл. Это дает возможность менять величину капли чернил в заданных параметрах, силу вылета и толщину струи. Капли чернил ложатся в строго запланированное место в строго запланированном порядке и строго запланированном объеме.

Термоструйная и пьезоэлектрическая технологии используют разные физические принципы для распыления чернил на бумагу, в связи с чем чернила имеют разную вязкость, электропроводность, химический и физический состав и поэтому не являются взаимозаменяемыми.

Главное преимущество технологии печатающих головок Epson - достижение очень высокого разрешения (5760x1440 точек на дюйм при размере чернильной капли 3 пиколитра) и фотографическое качество печати. Сжатие керамики и тот факт, что чернила не нагреваются, дают возможность получить более гладкие капли по сравнению с взрывообразным выбросом чернил из сопла термической головки. Размер капель лучше контролируется в случае пьезоэлектрической головки. Сопла печатающей головки Epson меньше, чем у термических головок (10-15 микрон по сравнению с 20-25 у Canon и 30-50 у НР и Lexmark). И срабатывает она быстрее: 50 кГц против 20 кГц.

Дополнительное преимущество пьезоэлектрической головки - возможность печатать чернилами на основе различных растворителей: масла, сублимационными, твердыми чернилами и т.д. Благодаря этому преимуществу пьезотехнология играет важную роль в области печати на специальных субстратах, таких как непористые материалы, ткани и т.д.

Минусы использования пьезоголовки - ее высокая стоимость и требовательность к качеству чернил. Помимо того, относительно большая масса пьезоголовки вызывает большие вибрации принтеров при скоростной печати и требует повышенного внимания к разработке привода и системы позиционирования.

Все основные производители струйных принтеров используют технологию термоструйной печати. Только Seiko Epson Corporation использует технологию пьезоэлектрической печати. Эта технология защищена более чем 4000 патентов во всех странах.

Компания Epson конструирует свои устройства по следующему принципу: печатающая головка встраивается в аппарат, а чернильные картриджи поставляются в виде чернильниц разного объема от 10 до 50 мл. Это позволяет немного удешевить ежедневную печать, ведь другие производители поставляют картриджи вместе с печатающими головками. Ко всему прочему, пользователь может подключить к своему устройству СНПЧ (систему непрерывной подачи чернил) для еще более качественной деловой печати. Однако при выборе СНПЧ необходимо тщательно выбирать производителя, т.к. рынок насыщен дешевым товаром и некачественными чернилами.

Компания Epson бдительно следит за рынком струйной печати, улавливает его тенденции и изменения. Совсем недавно компания представила устройство Epson L800 с СНПЧ собственной разработки. Линейку данных моделей с низкой себестоимостью печати называют Фабрикой печати. Пользователи таких устройств могут самостоятельно дозаправлять контейнеры с чернилами.

Подводя итоги, заметим, что технологии не стоят на месте и струйная печать отнюдь не умирает, как ей предрекали 3-4 года назад некоторые специалисты в области печати. Твердо можно сказать, что струйная печать может обеспечить относительно недорогой отпечаток высокого качества с большим разрешением.

Картриджи и расходные материалы фирмы Epson без труда поддаются повторной заправке тонером. Наша компания осуществляет Epson, учитывая все особенности их комплектации.


Основой любого процесса струйной печати является процесс создания капель красителя и переноса этих капель на бумагу или любой другой носитель, пригодный для струйной печати. Управление потоком капель позволяет добиться различной плотности и тональности изображения.
На сегодняшний день существует два различных подхода к созданию управляемого потока капель. Первый метод, основанный на создании непрерывного потока капель, так и называется - метод непрерывной струйной печати . Второй метод создания потока капель предусматривает возможность непосредственного управления процессом создания капли в нужный момент времени. Системы, использующие этот метод управления потоком капель, получили название системы импульсной струйной печати .


Непрерывная струйная печать



Краситель, находящийся под давлением, поступает в сопло и разделяется на капли путем создания быстрых колебаний давления, получаемые с помощью какого-либо электромеханического средства. Колебания давления вызывают соответствующую модуляцию диаметра и скорости выходящий из сопла струи красителя, которая разделяется на отдельные капли под воздействием сил поверхностного натяжения.
Этот метод позволяет достигать очень большой скорости создания капель: до 150 тыс. штук в секунду для коммерческих систем и до миллиона штук для специальных систем. Для управления потокам капель используется электростатическая система отклонения. Вылетающие из сопла капли проходят через заряженный электрод, напряжение на котором меняется в соответствии с управляющим сигналом. Поток капель попадает за тем в пространство между двумя отклоняющимися электродами, имеющими постоянную разность потенциалов. В зависимости от полученного ранее заряда отдельные капли изменяют свою траекторию по-разному. Этот эффект позволяет управлять положением печатаемой точки, так и ее наличием или отсутствием на бумаге. В последнем случае капля отклоняется настолько, что попадает в специальный улавливатель.
Подобные системы позволяют печатать точки диаметром от 20 микрон до одного миллиметра. Типичной является точка размером 100 микрон, что соответствует объему капли в 500 пиколитров. Основное применение такие системы нашли на рынке промышленной печати, в системах маркировки товаров, массовой печати этикеток, медицине и пр.

Импульсная струйная печать



Этот принцип создания потока капель предусматривает возможность непосредственного управления процессом создания капли в определенное время. В отличие от систем непрерывного действия, здесь отсутствует постоянное давление в объеме чернил, а при необходимости создания капли генерируется импульсы давления. Управляемые системы принципиально менее сложны в изготовлении, однако для их работы требуется устройство создания импульсов давления примерно втрое более мощно, чем для систем непрерывного действия. Производительность управляемых систем составляет до 20 тыс. капель в секунду для одного сопла, а диаметр капель - от 20 до 100 микрон, что соответствует объему от 5 до 500 пиколитров. В зависимости от способа создания импульса давления в объеме с чернилами различают пьезоэлектрическую и термическую струйную печать.
Для реализации пьезоэлектрического метода в каждое сопло установлен пьезоэлемент, связанный с чернильным каналом диафрагмой. Под воздействием электрического поля происходит деформация пьезоэлемента, благодаря которому сжимается и разжимается диафрагма, выдавливая каплю чернил через сопло. Подобный метод генерации капли используется в струйных принтерах Epson.
Положительным свойством таких технологий струйной печати является то, что пьезоэффект хорошо управляем электрическим полем, что дает возможность достаточно точно варьировать объемов получаемых капель, а значит и в достаточной степени влияет на размер получаемых пятен на бумаге. Тем не менее, практическое использование модуляции объема капель затруднено тем, что изменяется не только объём, но и скорость движения капли, что при движущейся головке вызывает ошибки позиционирования точки.
С другой стороны, производство печатающих головок для пьезоэлектрической технологии оказывается слишком дорогим в пересчете на одну головку, поэтому в принтерах Epson печатающая головка является частью принтера и по стоимости может составлять до 70% от общей стоимости всего принтера. Выход из строя такой головки требует серьезного сервисного обслуживания.




Для реализации термоструйного метода каждое из сопел оборудовано одним или несколькими нагревательными элементами, которые при пропускании через них тока за несколько микросекунд нагреваются до температуры около 600С. Возникающие при резком нагревании газовый пузырь выталкивает через выходное отверстие сопла порцию чернил, формирующих каплю. При прекращении действия тока нагревательный элемент остывает, пузырь разрушается, а на его место поступает очередная порция чернил из входного канала.
Процесс создания капель в термических печатающих головках после подачи импульса на резистор почти неуправляем и имеет пороговую зависимость объема испаряемого вещества от приложенной мощности, поэтому здесь динамическое управление объемом капели в отличие от пьзоэлектрической технологии весьма затруднительно.
Тем не менее, термические печатающие головки обладают самым высоким соотношением производительности и стоимости производства единицы продукции, поэтому термоструйная печатающая головка обычно является частью картриджа и при замене картриджа на новый автоматически происходи и смена печатающей головки. Однако, применение термических печатающих головок требует разработки специальных чернил, которые могут достаточно легко испаряться без возгорания и не подвержены разрушению при термическом ударе.

Печатающая головка Lexmark



Печатающая головка черного картриджа обычного разрешения 600 dpi для ранних моделей (Lexmark СJP 1020, 1000, 1100, 2030, 3000, 2050) имели 56 дюз, расположенных в два зигзагообразных ряда. Печатающая головка для цветных картриджей этих моделей имели 48 дюз разделенных на три группы по 16 дюз для каждого цвета (Cyan, Magenta, Yellow). Принтер Lexmark CJ 2070 использовал иную печатающую головку, которая содержала 104 монохромных дюзы и 96 цветных.
Для производства печатающих головок струйных принтеров Lexmark, начиная с 7000 серии используется печатающие головки, изготавливаемые с применением лазерной технологии прошивки дюз (Excimer, Excimer 2). Первые модели печатающих головок содержали 208 монохромных дюз и 192 цветных.
Для модели Z51 и старшей модели семейства Zx2 и Zx3 была разработана своя печатающая головка с 400 дюзами. В модели Z51 использовалась лишь половина дюз, а остальные работали в режиме горячего резерва, когда как в следующих моделях были одновременно задействованы все дюзы.
Младшие и средние модели семейства Zx2 используют картриджи, являющиеся модификацией стандартных картриджей высокого разрешения, а младшие и средние модели семейства Zx3, новые модели картриджей Bonsai.
Не оставляйте дюзы печатающей головки открытыми в течение продолжительного времени. Если дюзы оставить открытыми - чернила в них засыхают и засоряют каналы, что приводит к дефектам при печати. Картридж следует оставлять в принтере или в специальном боксе гараже »). Нежелательно также дотрагиваться до дюз и контактов руками, так как сальные выделения от кожи могут испортить поверхность.

Характеристики печатающей головки



Период формирования мениска:
Это период времени, необходимый для повторного заполнения камеры чернилами. Он определяет рабочую частоту печатающей головки (от 0 до 1200 Hz).





Скорость капли:
Низкая скорость приводит непрерывному расположению точки.
Высокая скорость приводит к появлению брызг и разводов.




Масса капли определяется:
Размером нагревающего элемента.
Диаметром сопла.
Обратным давлением.





Замечено, что в обычных струйных принтерах капля чернил, попадая на бумагу принимает форму маленького треугольника, поэтому линии при ближайшем рассмотрении выглядят зазубренными. Это связано с тем, что в полете капля деформируется, а при соприкосновении с бумагой - расплывается. Особенно это заметно в низком режиме при экономной печати. Lexmark предлагает принтеры с новой, прогрессивной технологией печати, при которой форма сопел и скорость движения головки сбалансированы так, что капля чернил дают пятна, как равномерные штрихи. Это позволяет сделать линии гладкими, а качество печати почти неотличимы от лазерной печати. Кроме того, такая форма пятна позволяет избежать белесых полос на отпечатке.


Что такое чернила?



Каждый производитель струйных принтеров разрабатывает и совершенствует свой состав чернил, который наиболее адаптирован к выпускаемой технике. У Lexmark основными компонентами чернил для струйных принтеров является:
-Деионизированная вода (85-95% общего объема)
-Пигмент или краситель
-Растворитель (для пигментов)
-Увлажнитель (Humectant)
-Поверхностно-активное вещество (Surfactant)
-Биоцид
-Буфер (стабилизация pH)

Пигмент или краситель . Чернила на основе пигментов (только черные) изготовлены из твердых частиц, находящихся в жидкости. При попадании таких чернил на бумагу жидкость испаряется и частично впитывается, а порошок прилипает к поверхности, не растекаясь по ней. Поэтому чернила на основе пигментов водостойкие, обладают слабым проникновением в волокна бумаги, но они чувствительны к свету.
Чернила на основе красителей - это, как правило, цветные чернила. Краситель растворим в воде и впитывается вместе с ней в толщу бумаги при высыхании. Такие чернила высыхают быстрее пигментных, светоустойчивы, но зато дают в среднем пятен неправильной формы больше, чем последние.
Увлажнитель. Концентрация увлажнителя влияет на вязкость чернил. Этот параметр должен быть оптимален для данного состава чернил и печатающей головки, совместно с которой они будут использоваться. Действительно, с одной стороны, чем больше вязкость, тем хуже чернила растекаются по поверхности бумаги, давая меньший размер точки и тем более четким будет изображение. С другой стороны, слишком большая вязкость приводит к затянутому времени формирования мениска, что ухудшает скорость печати. Обычно, вязкость чернил является ключевым параметром при определении геометрических каналов в печатающей головке.
Поверхностное натяжение влияет на смачиваемость чернилами всех поверхностей, с которыми они соприкасаются, начиная от резервуаров в картридже и кончая поверхностью бумаги. Слишком низкое статистическое поверхностное натяжение приводит к более быстрому высыханию чернил на поверхности бумаги, но при этом средний объем капли при выдавливании чернил из дюз оказывается завышенным. Слишком высокое поверхностное натяжение увеличивает время высыхания, а следовательно ухудшает стойкость изображения при печати.
Уровень кислотности (РН) низкая кислотность приводит к низкой растворимости компонент чернил в воде и как следствие – плохой водостойкости изображения Стандартным считается уровень кислотности в диапазоне от 7.0 до 9.0.
В нутрии картриджа имеются резервуары с чернилами, дюзы печатающей головки и электрические контакты.
Цветной картридж содержит 3 отдельных ячейки для чернил трех разных цветов. В монохромном картридже содержится только одна ячейка с черными чернилами.

Чернила и цвета

Правильная передача цвета изображения на бумагу является высоко технологичным процессом, требующим учета немалого количества факторов, включая субъективную оценку. В первую очередь цветовая передача изображения зависит от химического состава чернил и бумаги, архитектуры принтера.
Обязательным требованием к чернилам является очень тонкий спектральный состав, иначе получаемые при смешении цвета будут «грязными». После высыхания чернила должны оставаться прозрачными, иначе не будет естественного смешения цветов.
Немаловажным фактором является также устойчивость к выцветанию, экологическая чистота и нетоксичность.
Считается, что оптимальный состав чернил ужу известен. Практически у всех производителей они представляют взвесь очень мелких частиц минерального пигмента. С цветными чернилами дело обстоит хуже, поскольку очень трудно подобрать минеральные красители нужного спектрального состава.
В настоящее время процедуры цветопередачи базируются на так называемых цветовых таблицах, которые используются для преобразования цветового пространства, в котором было создано изображение-оригинал, в некоторое «деформированное» цветовое пространство, учитывающее особенности передачи цветов на бумаге чернилами. Обычно, отдельные цветовые таблицы строятся для каждого типа бумаги и оптимизированы для каждого отдельного типа чернил и печатающих головок.

Драйверы Lexmark



Драйверы принтеров Lexmark после установки готовы к печати с автоматическим режимом распознавания объектов, позволяющим получить хорошее качество изображения без предварительной настройки. Автоматический режим также позволяет добиться оптимального сочетания качества и скорости печати документа. Настройки драйвера на специальную бумагу или выбор цветовых таблиц для более контрастного или естественного тона изображения выполняется очень просто в разделе настроек драйвера «Качество документа» (Document Quality)
Драйверы Lexmark серии Color Fine 2 позволяют автоматически определять тип картриджа, тем самым заметно упрощая процедуру настройки всех систем на другой тип картриджа или смену старого на новый. Характерной особенностью драйверов этой серии является их возможность работать с изображением в стандартах sRGB и ICM.
Стандарт sRGB предлагает, что для описания цветного изображения используется аппаратно-независимое цветное пространство, встроенное в OC Microsoft или в средства работы с Internet. Используя стандартизованное RGB-описание цветового пространства UTI-R BT.709, этот стандарт позволяет минимизировать передачу вместе с изображением дополнительной системы информации, связанной с цветовым профилем оборудования, на котором это изображение создавалось. В системной части файла с изображением лишь дается ссылка на стандарт, в котором оно было создано, а положение-получатель активно используется описанием цветового пространства, представленным операционной системой.
Стандарт ICM позволяет более точно определить разнообразие устройств генераций и отображение цветных изображений посредством использования цветных профилей оборудования для каждого типа устройств, генерирующих изображение и отображающих устройств. Однако, такой подход подразумевает, что системная информация, связанная с профилем оборудования, на котором создано изображение предается в месте с этим изображением.

Фотопечать



Серьезной проблемой в струйной печати является правильная передача светлых тонов изображения. Дело в том, что обычные цветовые решения для струйной печати дают точки изображения насыщенного цвета, поэтому для получения бледных оттенков нужно наносить капли чернил достаточно редко. Это приводит к тому, что при передачи очень светлых тонов пятна располагаются так далеко друг от друга, что становится заметна зернистость изображения, а также возникает проблема с передачей в светлых тонах.
Одним из радикальных способов решения этой проблемы является использование дополнительных чернил светлых тонов. В этом случае темные тона получаются за счет заливки осветленными чернилами. Картридж с такими чернилами обычно становится вместо второго картриджа (черного) и содержит чернила осветленного Cyan, осветленного Magenta и черного. Светло желтый тон не используется, поскольку этот цвет воспринимается человеческим глазом без особой разницы как и желтый.